首页 趣味数学故事正文

数学家许宝騄生平故事

xiawuyouke 趣味数学故事 2022-01-04 20:12:53 50 0 数学家

数学家许宝騄生平故事

数学家许宝騄

许宝騄(1910年9月1日-1970年12月18日),字闲若,出生于北京,原籍浙江杭州,数学家,中国科学院院士,北京大学数学系教授 。

01

许宝騄幼年随父赴任,曾在天津、杭州等地留居,大部分时间都由父亲聘请家庭教师传授,攻读《四书》 、 《五经》 、历史及古典文学,10岁后就学作文言文,因此他的文学修养很深,用语、写作都很精练、准确。

1925年,许宝騄进入北京汇文中学,从高一读起。

1928年,汇文中学毕业后考入燕京大学理学院。由于中学期间受表姐夫徐传元的影响,对数学颇有兴趣,入大学后了解到清华大学数学系最好,决心转学念数学。

1929年,进入清华大学数学系,仍从一年级读起。当时的老师有熊庆来、孙光远、杨武之等,一起学习的有华罗庚、柯召等人。

1933年,毕业获理学士学位,经考试录取赴英留学,体检时发现体重太轻不合格,未能成行。于是下决心休养一年。

1934年,任北京大学数学系助教,担任正在访问北京大学的美国哈佛大学教授奥斯古德的助教,前后共两年,奥斯古德在他后来出版的书中,提到了许宝騄的帮助。奥斯古德是分析方面的专家,在这两年内许宝騄做了大量的分析方面的习题,也开始了一些研究,1935年他发表了两篇论文,其中一篇是与江泽涵合作的,都是分析方面的论文。那时芬布尔和阿蒂肯合写的《标准矩阵论》已出版,许宝騄熟练地掌握了矩阵的工具,尤其精通分块演算的技巧。所以这两年内他在分析和代数两方面都打下了扎实的基础。

1936年,许宝騄再次考取了赴英留学,派往伦敦大学学院,在统计系学习数理统计,攻读博士学位。

1938年,许宝騄共发表了3篇论文。当时伦敦大学规定数理统计方向要取得哲学博士的学位,必需寻找一个新的统计量,编制一张统计量的临界值表,而许宝騄因成绩优异,研究工作突出,第一个被破格用统计实习的口试来代替。1938年他获得了哲学博士学位。同年,系主任内曼受聘去美国加州大学伯克利分校,他推荐将许宝騄提升为讲师,接替他在伦敦大学讲课。

1940年,发表的两篇文章是数理统计学科的重要文献,在多元统计分析和内曼-皮尔逊理论中是奠基性的工作,因此他获得了科学博士的学位。

1946年,到北卡罗莱纳大学任教。一年后,他决心回国,谢绝了一些大学的聘任,回到北京大学任教授。

1948年,当选为中央研究院院士。回国后不久就发现已患肺结核。他长期带病工作,教学科研一直未断,在矩阵论,概率论和数理统计方面发表了10余篇论文。

1963年,许宝騄带病领导3个讨论班(平稳过程、马氏过程、数理统计),带领青年人搞科研。他在60年代中期,对组合数学有浓厚的兴趣,1966年初,与段学复教授联合主持组合数学的讨论班,因"文化大革命"而被迫中断。

1970年12月逝世时,他床边的小茶几上还放着一支钢笔和未完成的手稿。

02

许宝騄从事数理统计学和概率论研究,最先发现线性假设的似然比检验(F检验)的优良性给出了多元统计中若干重要分布的推导,推动了矩阵论在多元统计中的应用,与H.Robbins一起提出的完全收敛的概念是对强大数定律的重要加强。

1938年许在论文中第一个讨论线性模型中参数б2的优良估计问题。在二次无偏的估计类中,如要求估计量的方差与期望值参数无关,他证明了通常的无偏估计S2具有一致最小方差的充分必要条件是4阶矩具有与正态相同的关系式(这一条件在现在的文献中称为准正态分布)。这个工作直到1952年,拉奥才从另一个角度--限定二次估计是非负的--重新讨论了这个问题,得出了另一种充分必要条件。到了70年代末期,方差分量的模型引起了统计界的广泛注意,许宝騄的工作是这个方向的起始点,而且他提出的方法仍然是处理更加复杂问题的有力工具,有的论文就用许氏模型这一名称来代表这类问题。

此外许宝騄在寻求统计量的极限分布,在次序统计量的极限律型方面,都有重要的贡献。在1949年的一篇论文中,他考虑了样本均值ū1,…,ūk的函数f(ū1,…,ūk),利用泰勒展开,就可以用线性函数或二次函数去近似。并且用许多例子说明,当零假设成立时,线性部分依概率收敛于零,极限分布是正态变量二次型的分布,在很多情况下,正好是x2分布;当零假设不成立时,线性部分是主要的,因此极限分布是正态。在这篇长达40多页的论文中,他给出了许多统计量(尤其是多元分析中常见的)的渐近分布。60年代初,许宝騄领导了一个讨论班,带动一批学生用类似的方法,获得了次序统计量的各种情况下的极限律型,无论是单项的还是多项的,是固定名次的边项还是非固定名次的边项,是正则的还是非正则的中项,发表了几篇论文。这些文章都是用笔名或他的学生的名义发表的,而基本的方法和思想都是他提出的。

多元统计分析中,相当于一元统计中x2分布的是正态总体样本协差阵的分布。维希特在1928年导出这一分布时,用的是几何方法,证明中依赖于一些直觉的结论。这一工作被认为是多元分析历史的开始。如果能给出一个严格而清晰的证明,这在理论上是重要的。许宝騄解决了这一困难,他把矩阵演算融合于分析的积分计算之中,给出了一个漂亮的证明,得到了一个一般性的积分公式:当n≥p≥1时,使用这一公式,只需在左端用正态密度及样本协差阵的函数代替函数f(.),右端就给出样本协差阵函数的期望值,从而导出相应的分布。这一公式现已称为许氏公式。从这个公式很方便导出著名的巴特莱脱(Bartlett)分解。

许宝騄在学术研究上,一直是知难而进,积极参与重大问题的探讨,他力求问题的彻底解决。例如非中心维希特分布的随机矩阵W的全部特征根,它们的联合分布是很困难的,从大样理论来看,求得渐近分布就可处理实际问题,而极限情况依赖于总体的协差阵Σ和非中心参数阵φ,这些特征根的联合分布仅依赖于|φ-λΣ|=0的这些相对特征根λ1≥…≥λp≥0,这些λi可以是0,又可以是重根,他完美地处理了最一般的情况,这就充分显示了他在数学上的功力。

他不仅自己在多元分析方面有很多开创性的工作,他还培养了像安德森、奥肯等国际上多元分析学术带头人,所以许宝騄被公认为多元统计分析的奠基人之一。许宝騄的像片悬挂在斯坦福大学统计系的走廊上,与世界著名的统计学家并列。


免费下载:微信扫码关注网站官方公众号【中小学趣味数学 qwshuxue
趣味数学二维码
1、回复 “101”免费领取《【小学奥数】学er思内部题库word可打印
2、回复 “102”免费领取《【记忆力教程】快速高效学习教程
3、回复 “103”免费领取《一分钟速算教程
4、回复 “104”免费领取《Top 32经典英文启蒙绘本PDF+MP3
5、回复 “105”免费领取《儿童英语绘本195本【PDF版】
6、回复 “106、107、108”免费领取《更多神秘礼物……
版权说明

本文仅代表作者观点,不代表本站立场。
本文系作者授权发表,未经许可,不得转载。

本文链接:http://www.allfloor.org/38284.html

发表评论

评论列表(0人评论 , 50人围观)
☹还没有评论,来说两句吧...

小学趣味数学题及答案_教案「免费下载」_小故事-阿尔法趣味数学网

http://www.allfloor.org/

|

Powered By Z-BlogPHP 阿尔法趣味数学网

使用手机软件扫描微信二维码

关注我们可获取更多热点资讯

www.allfloor.org